1,854 research outputs found

    Measurements of strongly-anisotropic g-factors for spins in single quantum states

    Full text link
    We have measured the full angular dependence, as a function of the direction of magnetic field, for the Zeeman splitting of individual energy states in copper nanoparticles. The g-factors for spin splitting are highly anisotropic, with angular variations as large as a factor of five. The angular dependence fits well to ellipsoids. Both the principal-axis directions and g-factor magnitudes vary between different energy levels within one nanoparticle. The variations agree quantitatively with random-matrix theory predictions which incorporate spin-orbit coupling.Comment: 4 pages, 3 figures, 2 in colo

    Single charge sensing and transport in double quantum dots fabricated from commercially grown Si/SiGe heterostructures

    Full text link
    We perform quantum Hall measurements on three types of commercially available modulation doped Si/SiGe heterostructures to determine their suitability for depletion gate defined quantum dot devices. By adjusting the growth parameters, we are able to achieve electron gases with charge densities 1-3 X 10^{11}/cm^2 and mobilities in excess of 100,000 cm^2/Vs. Double quantum dot devices fabricated on these heterostructures show clear evidence of single charge transitions as measured in dc transport and charge sensing and exhibit electron temperatures of 100 mK in the single quantum dot regime.Comment: Related papers at http://pettagroup.princeton.ed

    Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot

    Full text link
    We measure singlet-triplet dephasing in a two-electron double quantum dot in the presence of an exchange interaction which can be electrically tuned from much smaller to much larger than the hyperfine energy. Saturation of dephasing and damped oscillations of the spin correlator as a function of time are observed when the two interaction strengths are comparable. Both features of the data are compared with predictions from a quasistatic model of the hyperfine field.Comment: see related papers at http://marcuslab.harvard.ed

    Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot

    Full text link
    In quantum dots made from materials with nonzero nuclear spins, hyperfine coupling creates a fluctuating effective Zeeman field (Overhauser field) felt by electrons, which can be a dominant source of spin qubit decoherence. We characterize the spectral properties of the fluctuating Overhauser field in a GaAs double quantum dot by measuring correlation functions and power spectra of the rate of singlet-triplet mixing of two separated electrons. Away from zero field, spectral weight is concentrated below 10 Hz, with 1/f^2 dependence on frequency, f. This is consistent with a model of nuclear spin diffusion, and indicates that decoherence can be largely suppressed by echo techniques.Comment: related papers available at http://marcuslab.harvard.ed

    Dynamic Nuclear Polarization with Single Electron Spins

    Full text link
    We polarize nuclear spins in a GaAs double quantum dot by controlling two-electron spin states near the anti-crossing of the singlet (S) and m_S=+1 triplet (T+) using pulsed gates. An initialized S state is cyclically brought into resonance with the T+ state, where hyperfine fields drive rapid rotations between S and T+, 'flipping' an electron spin and 'flopping' a nuclear spin. The resulting Overhauser field approaches 80 mT, in agreement with a simple rate-equation model. A self-limiting pulse sequence is developed that allows the steady-state nuclear polarization to be set using a gate voltage.Comment: related papers available at http://marcuslab.harvard.ed

    Preface

    Get PDF

    Manipulation of a single charge in a double quantum dot

    Full text link
    We manipulate a single electron in a fully tunable double quantum dot using microwave excitation. Under resonant conditions, microwaves drive transitions between the (1,0) and (0,1) charge states of the double dot. Local quantum point contact charge detectors enable a direct measurement of the photon-induced change in occupancy of the charge states. From charge sensing measurements, we find T1~16 ns and a lower bound estimate for T2* of 400 ps for the charge two-level system.Comment: related articles at http://marcuslab.harvard.ed
    • …
    corecore